Recently, there has been a growing interest in applying machine learning methods to problems in engineering mechanics. In particular, there has been significant interest in applying deep learning techniques to predicting the mechanical behavior of heterogeneous materials and structures. Researchers have shown that deep learning methods are able to effectively predict mechanical behavior with low error for systems ranging from engineered composites, to geometrically complex metamaterials, to heterogeneous biological tissue. However, there has been comparatively little attention paid to deep learning model calibration, i.e., the match between predicted probabilities of outcomes and the true probabilities of outcomes. In this work, we perform a comprehensive investigation into ML model calibration across seven open access engineering mechanics datasets that cover three distinct types of mechanical problems. Specifically, we evaluate both model and model calibration error for multiple machine learning methods, and investigate the influence of ensemble averaging and post hoc model calibration via temperature scaling. Overall, we find that ensemble averaging of deep neural networks is both an effective and consistent tool for improving model calibration, while temperature scaling has comparatively limited benefits. Looking forward, we anticipate that this investigation will lay the foundation for future work in developing mechanics specific approaches to deep learning model calibration.
translated by 谷歌翻译
从设计架构材料到跨尺度的机械行为,计算建模是固体力学中的关键工具。最近,人们对使用机器学习来降低基于物理的模拟的计算成本越来越兴趣。值得注意的是,尽管依赖图神经网络(GNN)的机器学习方法在学习机制方面表现出了成功,但GNN的性能尚未针对无数的固体力学问题进行研究。在这项工作中,我们研究了GNN预测机械驱动的紧急行为的基本方面的能力:柱的几何结构与其弯曲方向之间的联系。为此,我们介绍了不对称屈曲柱(ABC)数据集,该数据集由三个不对称和异质列的几个子数据集组成不稳定。由于局部几何形状,实现标准卷积神经网络元模型所需的“图像样”数据表示不是理想的,因此激发了GNN的使用。除了研究GNN模型体系结构外,我们还研究了不同输入数据表示方法,数据增强和将多个模型结合在一起的效果。虽然我们能够获得良好的结果,但我们还表明,预测基于固体力学的新兴行为是非平凡的。因为我们的模型实施和数据集都在开源许可下分配,所以我们希望未来的研究人员可以在我们的工作基础上建立创建增强的机械师特定机器的机器学习管道,以捕获复杂的几何结构的行为。
translated by 谷歌翻译